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The Pauli algebra approach to special relativity 
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Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4 

Received 16 June 1988 

Abstract. The Pauli algebra 9, in which the usual dot and cross products of 3-space vectors 
are combined in an associative, invertible, but non-commutative multiplication, provides 
a simple but powerful approach to problems in special relativity. Even though the Pauli 
algebra is the Clifford algebra for Euclidean 3-space, Minkowski 4-vectors and their 
products in the Minkowski metric appear in a natural and covariant way as elements of 
9’. We review the algebra and develop a formulation which, although closely tied to 
elementary vector and functional analysis, nevertheless allows a compact coordinate-free 
treatment of essentially all problems in special relativity. We derive a number of useful 
results and show how the elements are related both to traditional Minkowski-space tensors 
and to elements of the Dirac algebra. 

1. Introduction 

Clifford algebras have become popular tools in the description of relativistic physics 
(Hestenes 1966, Choquet-Bruhat et al 1977, Salingaros and Dresden 1983, Chisholm 
and Common 1986). They provide a compact coordinate-free description of special 
relativity. The elements of such algebras are all the ‘multivectors’ which can be formed 
from linear combinations of antisymmetric products of a set of basis vectors. For 
example, starting with the four basis vectors of Minkowski space, one constructs the 
Dirac algebra D from sixteen possible basis forms: one scalar, fourvectors, six bivectors, 
four pseudovectors and one pseudoscalar. The name ‘Dirac algebra’ comes from the 
well known representation of its basis vectors by the Dirac matrices of relativistic 
quantum theory. It seems the natural choice for problems of special relativity and has 
been applied by a number of workers (Hestenes 1974, Hamilton 1981, Grieder 1984, 
Salingaros 1985,1986). However 0, or its complexification with 32 basis forms, contains 
element types and relations which are unfamiliar to most physicists, and perhaps as 
a result, it has not been widely adopted by the physics community. 

The simpler Clifford algebra built on the three basis vectors of three-dimensional 
Euclidean space is known as the Pauli algebra 9, named after the representation of 
its basis vectors as Pauli spin matrices. The basis vectors can also be represented by 
complex quaternions. The Pauli algebra in one or another of its explicit representations 
has long been known to be useful for many problems in special relativity (Klein and 
Sommerfeld 1910, Weiss 1941, MacFarlane 1962, Misner et al 1973, Frost 1975, Baylis 
1980, Baylis and Jones 1988). Like the larger Clifford algebras, it offers an economical 
coordinate-free formulation of problems. Unlike them, its elements can all be written 
as complex linear combinations of scalars and vectors, and its associative invertible 
algebraic multiplication is trivially expressed in terms of the familiar dot and cross 
products of vectors. Minkowski 4-vectors appear naturally as elements of 9, where 
they consist of a real scalar (the time component) plus a real vector. We have recently 
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argued that 9 should be as powerful as D in practically all applications in special 
relativity (Baylis and Jones 1988). The argument can be summarised as follows. 

The sixteen basis forms of D can be divided into eight even f o r m  (the scalar, six 
bivectors and a pseudoscalar) and eight odd ones (the vectors and pseudovectors). 
The even multivectors of D, which can be written as linear combinations of the even 
basis forms, constitute an algebra in themselves, the even Dirac algebra D,, which is 
isomorphic to 9. The odd multivectors of D do not constitute an algebra since the 
product of two odd multivectors is even. Nevertheless, they can be mapped onto 9 
by multiplying each of them by one of the basis vectors, thereby changing them to 
even multivectors. Since physically interesting quantities always seem to be either even 
or odd multivectors and not mixtures, the double mapping of D onto the half-size 9 
does not restrict the latter’s power in treating physical systems. 

Many of the results given here have been published previously, often not in terms 
of 8 but in the language of the isomorphic algebras of complex quaternions or of 
2 x 2 complex matrices in terms of higher-order Clifford algebras. However, in order 
to facilitate future applications it is important to collect the results in a single unified 
notation in which the coordinate-free matrix-free compactness of Clifford algebras 
makes a minimal extension of familiar vector and functional analysis. Results which 
we believe are new include the use of eigenprojectors of 9-elements to evaluate 
arbitrary functions (0 3), relations among scalar products including derivatives (§ 3), 
the explicit connection of some 9-elements to higher-rank Minkowski tensors and 
their duals (§  5), and relations involving bispinnors in 9 (§  6). A following paper 
(Baylis and Jones 1989) applies the formulation to the relativistic dynamics of charges 
in external fields. 

In § 2,  we review the algebraic multiplication of vectors and show how the existence 
of an associative invertible vector product gives 8 much of the facility with vectors 
that the familiar complex analysis has with complex numbers. In particular, simple 
expressions in 9 are found for analytic functions of vectors. The rotation operator is 
derived from a pair of reflections and is associated with the group SU(2). 

In § 3, the results are extended to general elements of 9, which have both scalar 
and vector parts. The scalar product required to establish a multiplicative inverse 
embodies the Minkowski metric, and transformations which leave it invariant define 
the homogeneous Lorentz group. Eigenvalues and eigenprojectors of 9-elements are 
introduced in order to express functions of 9-elements. 

In § 4, physical Lorentz 4-vectors are associated with real elements of 9, and their 
Lorentz transformations are found in terms of multiplication and addition within 9. 
8-elements of the restricted Lorentz group are exponentials of a complex vector, the 
six independent components of which give the rotation and boost parameters, and the 
2 x 2 matrices representing these 9-elements form the group SL(2, C ) .  Transformation 
laws for products of 4-vectors are easily found. They can be grouped into two classes: 
odd products transform like 4-vectors whereas even products transform like 6-vectors, 
which are equivalent to antisymmetric second-rank tensors in Minkowski space. 
Examples show how higher-rank objects can also appear in 9. 

The formal relationship of 9-elements and Minkowski tensors is given explicitly 
in § 5. By expanding 9-elements in the four basis elements us, the traditional 
Minkowski components are obtained directly. 

The paper concludes in § 6 with a brief discussion of spinors and bispinors in 9. 
The Dirac equation is shown to take a simple form which directly relates the various 
representations by rotations in two two-dimensional spaces. 



Pauli algebra approach to special relativity 3 

2. Vectors and their products 

The Pauli algebra 9 is the Clifford algebra A3,0 of R3 (Choquet-Bruhat et a1 1977). 
Its elements are all linear combinations of scalars and 3-space vectors. The algebraic 
multiplication of vectors is defined to have properties usually associated with the 
multiplication of square matrices. In this way a matrix representation of the algebra 
is anticipated. Thus the product of vectors x, y, z is associative: 

( x y ) z  = x ( y z )  7 xyt (1) 

but not generally commutative, and the complex conjugation of a product xy is 

(xy)' = y+x+  

(the symbol for Hermitian conjugation is used in order to make the algebra and its 
matrix representations formally similar). 

Of course, any product can be split into commuting and anticommuting parts: 

xy = x - y + ix x y 

x * y = $(xy + y x )  

(3) 

( 4 a )  

where the dot and cross products are defined by 

( 4 b )  
1 1 
21 2i 

x x y = 7 (xy - y x )  = - [x, y ] .  

The appearance of the imaginary i in (3) ensures that, if x and y are real, then 
both x y and x x y are real as well (see (2)). The dot and cross products so defined 
turn out to have precisely their usual meanings. The dot product is a scalar, invariant 
under rotations, and like other (possibly complex) scalars commutes with all other 
elements of 9. The cross product, on the other hand, behaves as a vector under 
rotations but is invariant under a spatial inversion which changes the signs of both x 
and y :  it is called a pseudovector and is easily identified in 9 as an imaginary vector. 

Much of the beauty and simplicity of the Pauli algebra lies in the fact that the 
algebraic product (3) is associative and invertible (as long as the factors are not null) 
even though neither the dot product nor the cross product have these properties 
separately. Neither the dot nor the cross product individually contains enough informa- 
tion to allow one of the vector factors to be determined if the other is known, but 
when combined in the algebraic product (3) there is enough information, and one can 
invert (3) to give 

x = (XY)Y/Y' ( 5 )  

where y 2  is a scalar equal to the squared length of the vector. Note from (3) that 
vectors are parallel iff (if and only if) they commute and they are perpendicular iff 
they anticommute. 

Any vector can be expanded in a basis of orthogonal unit vectors {a,, a2, a3} and 
these basis vectors must obey the same multiplication rules (3) as other vectors. The 
Pauli spin matrices obey such rules and can thus be used to represent the basis vectors 
and thereby to generate a 2 x 2 matrix representation of the algebra. (The scalars of 
P are multiplied by the unit matrix in order to complete the representation.) The 
expansion coefficients of the a, are the components of the vectors on an orthogonal 
system of coordinates. However, one of the strengths of Clifford algebras is that all 
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calculations can be performed without explicit reference to a specific system of 
coordinates or to the corresponding components. 

Higher-order products of vectors are easily found by iterating (3). Thus one finds 
that products of an odd number of vectors are generally vectors plus pseudoscalars 
(which change sign under inversion and appear in B as imaginary scalars), whereas 
products of an even number of vectors are scalars plus pseudovectors. Just as the 
pseudovector part of xy (3) gives the directed area of the parallelogram generated by 
x and y, so the pseudoscalar part of xyz gives 

(6) 
1 
2i 
- (xyz - zyx) = x x y * z 

the volume of the parallelepiped generated by the three vectors. (Where different types 
of vector products are combined, we establish the following hierarchy in order to 
reduce the number of parentheses required: first evaluate cross products, then dot 
products, and finally algebraic products.) 

As a simple application, we use (4) to express the triple cross product x x ( y  x z) 
in terms of algebraic products, and then-by adding and subtracting both w y  and yxz 
and grouping symmetric products (see (4a)) together-in terms of dot products: 

x x (Y x z) = -+[x, [Y, z11 
= - i [xyz - xzy - y w  + zyx] 

= y x -  z - X ’  yz (7) 
all without appealing to components or invoking the linear dependence of vectors. 

(Treatments of Clifford algebras (Hestenes 1966, Salingaros and Dresden 1983) 
often introduce an antisymmetric outer (or ‘Grassmann’) product, indicated by the 
wedge symbol A .  In B, these outer products can be identified by 

x A Y  = ; [ x ,  y ]  = ix x y  

x A Y  A z = ( X  A Y )  A z = X A  ( y  A z)  

= ; ( X  A y ) Z + Z ( X  Ay)] = i (X  X y )  * 2 

and the imaginary element i itself arises from the outer product of the three basis 
vectors: i = a1 A a, A a3 = a,u2u3. In our formulation of the Pauli algebra, we avoid 
use of the outer product by employing the more familiar real dot and cross products 
of vectors.) 

Multiple products of a vector with itself are particularly simple: 
X n  n even 
X “2 n odd 

where here x = ( x -  x ) ” ~  is the length of the vector and $ = x/x  is its direction. Any 
analytic function f (x)  of a scalar variable is easily extended to a function of a vector 
by substituting (8) into the power series expansion. The resulting function f ( x )  can 
be decomposed into an even scalar part and an odd vector part parallel to x: 

f ( x )  =f+(x)  +f-(x)$ (9) 
where f*(x) = If(x) +f(-x)]/2. For example 

exp(x) = cosh x+  sinh x 

= cosh x + 2 sinh x. (10) 

Note that the function of a vector variable commutes with that variable. 
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Many products of vectors are simplified by decomposing one of the vectors into 
parts parallel and perpendicular to another. For example, in the product 6x6, where 
6 is any real unit vector, one splits x into parts parallel (xi,) and perpendicular (x,) 
to 6. Since parallel vectors commute and perpendicular ones anticommute, 

(11) fix6 = i iXIpi+  6x*6 = (Xi,  -X,)fifi = XIl -xL.  

Consequently, the transformation 

x +. -6x'fi 

is a repection of x in the plane normal to fi. (The conjugation ensures that pseudovectors 
are reflected properly.) Reflections are easily compounded: a reflection in AI followed 
by a reflection in C2, is given by 

(13) 
A A  A A  x +. n,n,xn, n, . 

By (3) we can write 

6,$,= 6, fi,+ii, x fit 

=cos 0/2+ie^ sin 0/2 = exp(i0/2) (14) 
where 0/2 is the angle of the opening between theAiwo planes and ê  lies along their 
line of inte:section. Splitting x into parts xll = x - 00 parallel and x, = x - xll perpen- 
dicular to 0, the double reflection (13) is seen to be a rotation of x by 8 :  

x +  exp(-iO/2)x exp(i8/2) = xll +exp(-iO)x, 
A 

=xll+x,cos O+OxxsinO. (15) 

It is easily seen that rotations leave the scalar x2 invariant. Matrix representations of 
the rotation operators form the group SU(2) of unimodular unitary 2 x 2 matrices. We 
note in (15) that the two operators *exp(-i8/2) correspond to the same physical 
rotation. Furthermore, a unit vector 6 may be viewed as i times the rotation operator 
exp(-irfi/2) for a rotation of 180" about 6, and thus the general rotation ((13) and 
(15)) may be obtained from two 180" rotations as well as from two reflections. 

3. General elements of 9 

From the algebraic multiplication of vectors discussed above, one can see that the 
most general element of 9 is the sum of a complex scalar, say ao, and a complex 
vector a:  

a=a,+a.  (16) 
The product ab of two elements a and b = bo+ b is found by combining the rule (3) 
for vector multiplication with the usual multiplication by scalars. The dot product of 
any two elements a and b is defined as the scalar 

~ * b = a O b , + ~ * b  (17) 

from which it follows that a b = b a, 1 a is the scalar part of a and is identical with 
one-half the trace of the 2 x 2 matrix representing a, and 1 ( a b )  = a 9 b = 1 ( b a ) .  Of 
course the algebraic multiplication of 9-elements is associative: 

a ( b c ) = ( a b ) c = a b c  (18) 
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so that the scalar parts 

l.(abc)=a.(bc)=(ab).~=l '(bca) (19) 
may be calculated in several equivalent ways. 

In the previous section, the inverse of vector multiplication could be established 
because the square of a vector is a scalar. We want to extend the result to multiplication 
of genera1 elements of B, but a2 = a a + 2aoa is not a scalar unless either the scalar 
or vector part of a vanishes. However, an appropriate scalar product does exist. To 
every a = ao+ a E 9, there exists a related element d obtained by changing the sign of 
the vector part: 

d = a , - a  

which we call the 'spatial reverse' of a. Note that the spatial reverse of d is a and 
that the sum 

a + d = 2 . a = 2 a ,  
is a scalar. Indeed a given element of P is a scalar iff it is equal to its spatial reverse. 
The spatial reverse of a product is easily established from (3): 

- 
ab = bh-. (20) 

Since a6 is its own spatial reverse, the product of any element with its spatial reverse 
must be a scalar. It is called the 'modulus' of a :  

a d = a .  ( a d ) = d .  a = d a  

(21) 2 2  = a , - 0  

and is identical to the determinants of the matrix representation both of a and of 6. 
Any element whose modulus vanishes is said to be a null element. If its modulus is 
unitary, it is unimodular. 

Any non-null element a has a multiplicative inverse 

a - ' = d / ( a *  d ) .  (22) 
The inverse of a unimodular element is simply its spatial reverse. It is remarkable that 
the scalar of (21) needed to form multiplicative inverses in B suggests the Minkowski 
metric of special relativity even though P is the Clifford algebra for Euclidean 3-space. 
Evidently the scalar part of some 9'-elements may be interpreted as the zeroth or time 
components of Lorentz 4-vectors. If, in analogy with rotations, we look for transforma- 
tions which leave the scalar ad invariant, we obtain the Lorentz group. Explicit 
expressions for the transformations will be found in 9 4. Anticipating a Minkowski- 
space interpretation, we define two elements a and b to be orthogonal when the scalar 
a 6= b d vanishes. When they anticommute, they are perpendicular 3-vectors (a 
special class of orthogonal elements). 

In (9) we found a simple expression for a function of a vector. To extend this 
result to the function of a general element of P, we need an expression for powers a" 
of a. Since a + d = 2a0, 

a ( a  -+ 6) = a*+ a * d = 2aoa. (23) 
This result, which expresses a* in terms of a and scalars, can be used iteratively to 
find a",  but it can also be used as a minimum polynomial equation to find scalar 
eigenvalues CY and eigenelements x of a. Substituting 

ax = ax (24) 
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into (23) we obtain 
(CY2 -2aoff + a  ' d ) x  = 0 

which gives eigenvalues 

( 2 6 )  2 1/2  a * = a a , * ( a )  . 
As long as a2 f. 0, there are two distinct eigenvalues and the corresponding eigen- 

elements x must satisfy (24), which may be rewritten 

where â  is the unit vector a* = a / ( ~ * ) " ~ .  Multiplying equation (27) from the right by 
R we obtain 

Gx = *x (27) 

(1 F G)xf = 0 (28) 
which proves that the scalar XX = 0, i.e. that all eigenelements x must be null. The 
general solution x to (27) can be written 

x =  P*y (29) 

P* = +( 1 * 6) (30) 

P + + P - = l  P+P- = P-P+ = 0 P i  = P,. (31) 

p*f=t(i*i+j) = f p I  

where y is an arbitrary element of 9' and P,  is the projector (the 'eigenprojector') 

which obeys 

Note that, although we refer to P, as a projector, it is real iff a* is real. The general 
solution (29) can always be written as a linear combination of P,  and 

where f is any real unit vector perpendicular to a  ̂ and $ = â  x i. 
expanded 

With the eigenprojectors P, and their eigenvalues a* ,  any power of a can be 

a " = f f : P + + a " -  (32) 
and any analytic function f ( x )  is seen by power series expansion to be defined when 
the argument is an element a E 9 with a2 # 0 by 

f ( a )  =f(a+)P+ + f ( a - ) P -  

= f+ + f - 2  (33) 
where 

f* = t [ f ( a + )  *f(a-)l. 
The decomposition (33) is fully analogous to the secular decomposition useful for 
evaluating functions of diagonalisable matrices. It may even be used when f ( x )  has 
no power series expansion. For example, consider the square root function. Noting 
that a+ a- = ad, one easily verifies that 

a 1/2 = ;( a ;/2 + y 2 )  + +a* ( ;I* - a 11') 
1 

=-{[a,+(ad)"2]1/2+ G[ao-(aa)'~2]l'~2} a 
- a+(a6)"2 - 

2[ a0 + (ad)'/2] "2 

which can also be directly derived from (23). 

(34) 
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If a’= 0, a has only one eigenvalue, namely 1 . a = a,. If a = 0, a is a scalar and 
every element o f A 8  is an eige;element. However, a may also be a complex vector 
proportional to [ + i $  where 6 and $ are any perpendicular real unit vectors. It is 
easily seen that any linear combination of a and the projector 

P = f ( l + t x $ )  (35) 

is an eigenelement, and that any differentiable function of a can be expanded about 
a, to give 

f ( a )  = f ( a , )  + @(a,) (36) 

where the prime indicates differentiation with respect to its argument. 

4. 4-vectors, 6-vectors, and restricted Lorentz transformations 

Minkowski-space 4-vectors take the form of real elements of 8:  the zeroth or time 
component is added as a real scalar to the 3-space vector part. Some examples are 

position x = t + x  

momentum p = E + p  

vector potential A = 4 + A  

current density J = p + J  

differential operator a = a / a t  -7 

If we think of these as being 4-vectors in their contravariant form, the corresponding 
covariant forms are their spatial reversals. The modulus of a 4-vector is seen to be its 
Minkowski-space square norm. 

The spatial reflection (12) is easily extended to 4-vectors: 

(37) 
A - +  A x + n x  n 

and since the scalar part t commutes with all elements, the rotation transformation 
(15) for x has the same form as for the vector: 

x +  exp(-i6/2)x exp(i612). (38) 

The extension to the group LT of restricted Lorentz transformations is achieved if we 
allow the exponential parameter to be complex: 

x +  LXL+ (39) 

where the transformation L is a unimodular element of 8: 

L=exp(w/2-i6/2) (40) 

whose representations form the six-parameter group SL(2, C)  of unimodular complex 
2 x 2 matrices. If w = 0, L is unitary ( L+ = L) and the transformation is a pure rotation. 
If 6 = 0, L is real (L  = L+) and the transformation is a pure boost (velocity transfor- 
mation). 
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Consider, for example, the 4-position r = t + r of a particle transformed from its 
rest frame. Since the rest frame 4-position is simply the proper time r, a scalar, the 
boost transformation (39) gives 

r = L ~ L +  = LL+r = UT (41) 

where U = dr /d r  is the 4-velocity. In the case of a pure boost, L = L' = u " ~  with 

U =  y + u = e " = c o s h  w+$sinhw. (42) 

Lorentz transformations of products of 4-vectors are easily derived from (39). 
Products in which 4-vectors alternate with spatial reversals of 4-vectors have especially 
simple transformations. Thus, for example, the product 

rp = ( t + r ) ( E - p ) 

= (tE - r -  p ) +  rE - tp - i r  x p  (43) 

transforms as 
- 

rp + LrL+LpL' = LrpL. (44) 

The scalar part (in parentheses on the RHS of (43)) 

1 .  rp= r*p=(rp+pP) /2=(Fp+pr) /2  (45) 

is Lorentz invariant. It is, of course, the Minkowski-space scalar product of the 4-vectors 
r and p .  The rest of rp is a vector plus a pseudovector, which together is called a 
6-vector. (It may be recognised that the 6-vector part of rjj is the generator of boosts 
and rotations in quantum theory. Indeed, the six parameters w/2-i8/2 of a restricted 
Lorentz transformation are the components of a 6-vector.) 

All alternating products of 4-vectors and spatial reversals thereof transform like 
4-vectors ((39) or its spatial reversal) if there are an odd number of terms, or like 
6-vectors ((44) or its complex conjugate) if there are an even number. An important 
6-vector is the electromagnetic field F = E +iB, which in a Lorentz gauge (a A = 0) 
is simply 

F = E 4- i B = a A. (46) 

The gauge-independent expression in terms of the 4-potential A is 

F=(dA-Ad) /2  (46a) 

where the differential operator can operate to the left as well as to the right. A pure 
boost of F gives 

F + exp( w/2)F exp( - w/2) = Fll + uFL = Fll+ yFL + iu x F (47) 

where Fll = F - FL = F. $6. Like F, 6-vectors in 9 are equivalent to antisymmetric 
second-rank tensors in Minkowski space, but their coordinate-free representation in 
B as complex vectors is more compact and more intuitive. The duality rotation of the 
fields (Jackson 1975, p 252) is simply 

F + exp( -+)I? (48) 
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Although the elements of 9 are combinations of scalars and vectors, higher-rank 
covariant quantities often appear naturally in contracted form. For example, the 
4-vector quantity 

FaF+ (49) 

where F is the electromagnetic field (46) and a = a,+ a is an arbitrary 4-vector, is 
easily seen to be 

FaFt = 8ra0(  U + S )  + 87ra * (7- S )  (50)  

when U is the energy density, S is the momentum density or Poynting vector, and T 
is the Maxwell stress dyad: 

87rU = E*+ B2 ( 5 l a )  

expressed here in Gaussian units with c = 1. One sees immediately that FaF’ and 
hence U, S and .f: are invariant under duality rotations (48). 

5. Minkowski-space components 

An important advantage of the Pauli algebra is that calculations require no vector or 
matrix components. Nevertheless, elements of 9 can be expanded in a Minkowski- 
space basis if desired, as for example when comparing results in 9 with those from 
other approaches. 

We define a basis {up}pL=o,1,2,3 of elements in 9 by 

U 0  = 6 0  = 1 

U 2  = - U 2  = y 

U ,  = -6, = 2 

U, = - 6 3  = 2. - A  

From the definition (17) of a scalar product, we see 

The Lorentz scalars 

p = v = o  

uw * 6, = * U” = gwy = g * y =  -1 p =  v =  1 , 2 , 3  (54) { 1 / 1 # v  

are elements of the Minkowski-space metric tensor. An arbitrary element a of 9 can 
be expanded in the basis (repeated indices are to be summed) 

a = apuw = a,6,, (55) 

where the contravariant components u p  and covariant components a, are found from 
(53): 

a w = a .  uw a,, = a 6”. (56) 
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As a simple example, the Lorentz-scalar product of two 4-vectors a and b of 9 is 
- 

a * b = awu, @,b” = a’*g,,b” 

= a’lb, = a,bY. (57)  
Other products of 4-vectors may be similarly expanded. Consider the 6-vector 

f = -7 = ;(at?- bd)  = a6- a - 6 

f = $(arb” - a ” b P ) u  I * &  e ,  = 4 fFYTWCIV 

(58) 

(59) 

By expanding the 4-vectors a, 5, b and 6 in basis elements, as in ( 5 5 ) ,  we obtain 

is the antisymmetric second-rank Minkowski-space tensor associated with f and 

7,. = ;(U,@,, - U,,@,) = U,‘+. - g,, (61) 

7,” = (g,&o- ~ u a ~ , o + ~ ~ p u a o ~ ~ ~  (62) 

is an antisymmetric matrix of basis elements. Multiplication in 9 gives directly 

where e,,,ap is the fully antisymmetric fourth-rank tensor equal to +1 (-1) whenever 
the indices pvap are an even (odd) permutation of 1 2 3 0. The relation (59) between 
tensor elements f”” and 6-vector components off is easily seen when T , ~  (62) is written 
in matrix form: 

0 -2 - j  -2 
2 0 -iz^ i j  

- i j  (63) 

or equivalently, when the expansion (62) is substituted directly into (59),  

f=(fk0-ieIjkfO)Uk (64) 
where the indices j ,  k and 1 are summed over the values 1 ,2  and 3, and 

&rjk = ( ( T I  x uj ) * (+k = &/jko (65) 
is the usual Levi-Cevita symbol of 3-space. 

The corresponding relations for covariant components are found by replacing all 
the 4-vector factors by their spatial reversals in 9, without changing their order. Thus 
for 6-vectors formed from bilinear factors of real 4-vectors, the relation (59) becomes 

(66)  J’=’( 2 ab - - 6a) = f fpvTCLy 

where it has been assumed that a = U’ and b = b’. 
Dual tensors 

y ’ y  = f&CLuoP fap = 4 fap&“PI*“ 
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Higher-order products of 4-vectors in B can be related to Minkowski-space tensors 
by similarly expanding each 4-vector in basis elements w, and re-expressing products 
of basis elements as linear combinations of the w, themselves, through iterative 
application of (61) and (62). However, because operations with component-free 
elements of 9 are usually much simpler than manipulating Minkowski-space com- 
ponents, it is usually advantageous to complete the operations in 9 before expanding 
in components. For example, the Lorentz transformation of a 4-vector a, 

a = a "w, + L ~ L ~  = a,Lw,L+ (70) 

a y +  L",a@. (71) 

is easily used to find components L", of the transformation 

One finds 

L", = w v .  ( LU,L+) = ev.  ( LW,L+). ( 7 2 )  
Thus for a pure boost along the x axis to 4-velocity U = y +  U = L L f  (see (42)), since 
uo and u1 commute with U = tu12 whereas u2 and u3 anticommute, 

LL%, = uw, / L = O , l  
Li tu ,  = w, p = 2 , 3  

LW,L+ = 

p=O 
p = l  

p = 2 , 3  

(73a)  

(73b) 

and the 4 x 4 matrix (L",) is 

The same matrix elements appear in Lorentz transformations of all 4-vector 
products. For example, 6-vectors transform according to (44): 

f = ; p W &  + L f l =  ; f p""Lu,a,L 
-1 P P  - 2f ( L a ; L + ) ( k L ' )  
-I - 2L a ,LP, f ""waaP 

and thus in terms of Minkowski-space tensors 

f + L",LP, f PI,. 

(75) 

(76) 
Higher-rank tensors which appear in P? in contracted form may be related to their 

tensor counterparts by analogous expansions in the basis elements U,. For example, 
the 4-vector FaFt (50) is seen to arise from the contraction of the symmetrical 
electromagnetic stress tensor T," (Jackson 1975, p 605) with the arbitrary 4-vector a Y :  

FaFt = 8mrpTp',a". (77) 
However, it is usually simpler to manipulate the quantities in P. If a = 1 in (77) we 
obtain the real element 



Pauli algebra approach to special relativity 13 

which gives the 4-momentum density. Although the transformation properties of G 
are not simple, its norm 

is immediately seen in 9 (but not from the Minkowski-tensor expression) to be a 
Lorentz invariant. 

6. Conclusions 

Clifford algebras are known to off er compact component-free approaches to relativistic 
physics which emphasise the geometrical significance of the objects and their manipula- 
tions. What is surprising, and apparently often overlooked, is that the Pauli algebra, 
although it is the Clifford algebra for Euclidean 3-space, naturally gives rise to elements 
which are equivalent to the 4-vectors and higher-order tensors of Minkowski space 
and to their contractions in the Minkowski metric. The success of the Pauli algebra 
in describing relativistic phenomena suggests an alternative to the usual view of 
spacetime. Instead of working with a four-dimensional space, whose only restriction 
on homogeneity enters through a metric tensor which treats the time coordinates 
distinctly from the three space coordinates, the Pauli algebra deals explicitly with a 
three-dimensional space, and time enters not as the new dimension of an enlarged 
vector space, but rather as the scalar part of an element in the Clifford algebra of the 
Euclidian 3-space. The Pauli algebra approach thus sharpens the distinction between 
the time part and the three space components of what in Minkowski space is a 4-vector. 
The distinction is manifested in the invariance of the time part under transformation 
of the rotation group SU(2). Time and space are ‘unified’ in elements of 9 and are 
mixed by other Lorentz transformations which are defined to leave invariant these 
bilinear products of elements in 9 which are pure scalars. By introducing simple 
symbols to denote elements of 9, we obtain a covariant formulation of special relativity. 

In this paper, we have presented the Pauli algebra in a formulation convenient for 
applications in relativistic physics. In contrast to higher Clifford algebras, such as the 
Dirac algebra, multiplication in 9 is easily expressed in terms of familiar dot and 
cross products of 3-vectors. In contrast to the usual Minkowski-tensor approach, tensor 
components and their implicit reference to a system of coordinates are not necessary, 
and the geometric and physical significance of the tensors is usually more obvious. 
Unimodular elements have been seen to effect Lorentz transformations. 

Elements of 9 may be classified according to how they transform under restricted 
Lorentz transformations. In particular, we have distinguished elements which trans- 
form like 4-vectors of Minkowski space from products which transform like antisym- 
metric second-rank Minkowski-space tensors (one ‘6-vector’) (see (39) and (44)). It 
may sometimes be useful to introduce elements with other transformation behaviour. 
For example, a spinor element [rank (1, O ) ]  6 of 9 may be defined by the behaviour 

5 --L (80) 
A Lorentz transformation L,  = exp(w,/2 -itll/2) may itself be considered a spinor 
element if we take the result of a Lorentz transformation L2 on L1 to be the combined 
transformation L2L, (Hestenes 1966). (The alternate view, that the transformed L1 is 
L1 as viewed in the frame from which the lab frame is reached by Lz, gives a 6-vector 
transformation behaviour for L ,  as well as for w,/2-itl1/2. A spinor behaviour (80) 
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of L, is of course consistent with the 4-vector transformation of the product U, = L, L: 
(see (41)). 

If 7 is a rank (1,O) spinor element of 9, the conjugate of its spatial reverse 
transforms as a rank ( 0 , l )  spinor: 

ii+ --L n+. (81) 
Such spinors are involved in the Dirac equation. In P the Dirac equation follows 
from the inequivalence of the quantum operators pp and pp in the presence of an 
external 4-potential A where (with h = 1) 

p = i d - q A  (82) 
and q is the charge. The separate covariant equations 

PF5 = m25 
p p q +  = m*jj+ 

lead, with an added constraint on the relative norms of the spinor wavefunctions 5 
and ?+, to the equivalent first-order coupled equations (Baylis 1980) 

85 = mii+ (84a) 

p f +  = m5 (84b)  
which are easily written as a single equation for the bispinors: * = 5P++ f+P_ 

P, = 4( 1 * 2). 
where P, are the real projectors (30)  

One finds 

p+P- * p+P+ = m$i  

( 8 5 )  

as the Dirac equation in B in the spinor representation. The bispinor CC, transforms 
under Lorentz transformations according to 

4 + L*P+ + E+*P_, (88) 
From (85) and (86), the matrix representation of the bispinors in the spinor representa- 
tion is a 2 x 2 matrix where the first column is a two-element rank ( 1 , O )  spinor 
transforming like 6 (go), and where the second column is a rank ( 0 , l )  spinor transform- 
ing like fj' (81). Under a rotation, both parts of CC, transform the same way: 

*+ R*. (89) 
Other representations are obtained by multiplying on the right with a unitary 

element of 9, which represents a rotation 'in particle-antiparticle space' (in contrast 
to (89) which may be described as a rotation in 'spin space'): 

* + *R. (90) 
The standard representation, for example, is obtained by the 180" rotation which 
interchanges x^ c) k 

Much work remains to exploit fully the power of the Pauli algebra approach to 
relativistic physics. We have shown that the approach is not limited to the 4- and 
6-vectors of classical physics. However, in the following paper (Baylis and Jones 1989) 
we will concentrate on problems in classical electrodynamics. 
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